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 Exposure to Fasciola hepatica Miracidia Increases the Sensitivity of Lymnaea (Fossaria)
 humilis to High and Low pH

 I. Cruz-Mendoza, E. Naranjo-Garcfa*, M. T. Quintero-Martinez, F. Ibarra-Velarde, and D. Correat, Departamento de Parasitologia, Facultad
 de Medicina Veterinaria y Zootecnia, Universidad Nacional Aut6noma de Mexico, Mexico 04510 D.R, Mexico; *Departamento de Zoologfa,
 Instituto de Biologia, Universidad Nacional Aut6noma de Mexico; tMedicina Experimental, Instituto Nacional de Pediatria, Secretaria de Salud,
 Apartado Postal 70483, Mexico City, Mexico, D.R e-mail: irenecruz50@yahoo.com. mx

 abstract: Humidity and temperature have been considered important
 factors affecting the infectivity of Fasciola hepatica to its molluscan
 host. One hundred and thirty laboratory-reared Lymnaea humilis were
 exposed for 4 hr to the miracidia of F. hepatica over a pH range from
 4.0 to 10.0, and their rates of survival were compared with 130 similarly
 treated but unexposed control snails. All control snails died within 24
 hr at pH 4.0, but they showed better survival at pH 5.0-10.0. Their
 sensitivity to solutions with high and low pH, however, was increased
 if kept in the presence of F. hepatica miracidia. Snails exposed at pH
 5.0 died within 24 hr, whereas most other pHs also affected survival
 such that by day 18 only those snails exposed at pH 7.2 remained alive.
 The increased sensitivity of the snails to pH could be explained by a
 damage-mediated release of parasite enzymes, because infectivity was
 highest at pHs associated with the lowest host mortality.
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 Fasciola hepatica is considered to be one of the most important par-
 asitic diseases of domestic animals worldwide (Dreyfuss and Ronde-
 laud, 1997; Mas-Coma et al., 2001). Although the life cycle of this
 fluke is generally well known, we do not currently have an adequate
 understanding of the miracidial invasion of the snail host, especially in
 terms of the effects of environmental variables on this process. Chris-
 tensen (1980) demonstrated that the swimming miracidium is attracted
 to the snail by chemotactic factors released by the host. The parasite
 attaches to the epithelial cell surface of the mantle, which it invades by
 secreting digestive enzymes (Kendall, 1965). Several field studies have
 demonstrated that the prevalence and intensity of infection in snail hosts
 change seasonally (Craig and Bell, 1978; Boyce and Courtney, 1990;
 Cruz-Mendoza et al., 2002, 2004, 2005), and although humidity and
 temperature are thought to be the most important factors determining
 miracidial infectivity (Kendall, 1965; Boray, 1969), comparative studies
 on the effects of other environmental parameters on snail and miracidial
 survival are scarce. Abrous et al. (2001) reported that experimentally
 induced cold, fasting, and detergent treatment of L. truncatula increased
 the intensity and prevalence of infection by F. hepatica miracidia.

 It also has been shown that a pH range between 7.0 and 9.0 is optimal
 for miracidial activity as well as salinity up to 5%, whereas pH con-
 ditions below 5.0 or above 10.0 kill the parasites in vitro as does a salt
 concentration above 7% (Cruz-Reyes, 1986).

 The purpose of our study was to add to the understanding of the
 potential influence of environmental factors on infection of Lymnaea
 {Fossaria) humilis snails with Fasciola hepatica miracidia, by experi-
 mentally determining the effects of different pHs on parasite infectivity
 and host snail survival. Unexpected findings of these experiments are
 presented below.

 The eggs of F. hepatica used as the source of miracidia for infection
 of the experimental host L. humilis were extracted from the gall-bladder
 of an infected bovine by filtering the bile, letting the sediment settle,
 pouring off the supernatant, and replacing it with clean water. Eggs were
 then incubated at 27-29 C for 13-16 days, to induce hatching, i.e.,
 release of miracidia (Cruz-Mendoza et al., 2002). Lymnaea humilis
 snails were collected at the ranch of the Autonomous University of
 Hidalgo, located in the State of Hidalgo, central Mexico. In the labo-
 ratory, egg masses collected from snails were allowed to hatch in Petri
 dishes with aerated water. Hatchlings were raised on mud with the blue-
 green alga Oscillatoria sp.

 In total, 260 F, L. humilis 3.0-4.0 mm in length (20 to 22 days old)
 were used. Snails were kept individually for 4 hr at 20-22 C in 96
 culture wells with 0.35 ml/well of 0.01 M phosphate-buffered solution

 at different pH values from 4.0 to 10.0 and in the presence (experi-
 mental) or absence (controls) of 3 miracidia/snail. Within each group,
 10 snails were incubated at each pH (Cruz-Mendoza et al., 2002). Snails
 were then transferred to petri dishes on mud as described above and
 observed after 24 hr and then at 3-day intervals. Dead snails were dis-
 sected and examined to determine infection by F. hepatica. At day 18,
 the surviving snails were dissected and analyzed. Voucher shells of
 snails used in the experiment were deposited in the "Colecci6n Na-
 cional de Moluscos" at the National Autonomous University of Mexico
 with the number CNMO-1657. Significant differences in proportion of
 viable snails between control and experimental groups were obtained
 by chi-square or Fisher exact test.

 Uninfected L. humilis survived over a wide pH range (Fig. 1). At pH
 4.0, all control snails died within 24 hr. In contrast, snails exposed to
 F. hepatica miracidia and kept in the different test solutions were more
 sensitive to solutions with low, and to a lesser extent, high pH. Snails
 exposed to pH 4.0 and 5.0 died within the first day after exposure; all
 snails incubated with the parasite, except some snails exposed at pH
 7.2, died by day 18. In general, low and high pHs affected the infected
 snails, particularly the low pHs, but as the pH approached neutrality
 (i.e., pH 7.2), the effect was less marked. Interestingly, snails survived
 better at basic pHs (8-10), and the infected snails kept at pH 7.2 seemed
 not to be affected by the parasite. Miracidia as well as snails might have
 been affected by the various test solutions because rate of infection was
 lower at low and high pHs. Half of the experimental molluscs were
 infected with F. hepatica at pH 6.0, 7.0, and 7.5 compared with 80%
 at pH 7.2 (Fig. 2). A positive correlation was observed between snail
 viability and infection frequency (R2 = 0.62, P < 0.05 at day 15).
 During this experiment, the optimal pH for survival and infectivity was
 7.2 (Fig. 2), which does not support Cruz-Reyes' (1986) conclusion that
 the optimal pH range for miracidial activity was between 7 and 9. To
 confirm these results it will be necessary to design extended experi-
 ments, to obtain the second free-swimming stage (cercaria) so as to be
 able to accurately establish the parasite's optimal pH range.

 In this study, we observed the dual effect on host snail survival of
 changing pH and miracidial infectivity. Other researchers have studied
 stress factors on infection by trematodes. The number of challenging
 parasites can be life-threatening, because the proportion of living L.
 truncatula snails dramatically decreased when infected with 10 or 20
 miracidia, whereas the proportion of snails infected with 5 or fewer
 miracidia was not decreased (Dreyfuss et al., 1999). Lymnaea truncatula
 was more susceptible to infection by F. hepatica after being exposed
 to stressors such as fasting, detergent, or cold pretreatment. The pH also
 affected the host-finding capacity of miracidia as was found for the
 infectivity of Schistosoma mansoni to Biomphalaria glabrata (Dreyfus
 et al., 1999).

 Kendall (1965) described the process of invasion, which may shed
 some light on what is probably damaging the snail at low and high pHs
 in the presence of the parasite. The miracidium first attaches to the host
 mantle epithelium, causing local damage as it does so. As noted by
 Graczyk and Fried (1999), "the host tissue is lysed by the gland secre-
 tions only in direct proximity of the apical region of the migrating
 miracidium." This process is probably mediated by proteolytic enzymes
 delivered by the apical gland of the parasite (Graczyk and Fried, 1999).
 Apparently, no protease has been reported to be synthesized by mira-
 cidia, although the presence of these enzymes has been documented in
 adults (Dalton et al., 2003). Nevertheless, Wilson (1969) described 3
 types of vesiculated cells in the tegument of the miracidium of F. he-
 patica, some present near the surface. Because the snail epithelium is
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 Figure 1 . Effect of different pHs on survival of L. (Fossaria) humilis. Continuous lines depict control snails, whereas dashed lines correspond
 to molluscs coincubated with F. hepatica miracidia (exp). The numbers in the insets correspond to the pHs of the solutions. Statistical significance
 of differences between control and experimental groups was P < 0.0001 for pHs 5.0 and 5.7 and P < 0.05 for pHs 6.5, 7.0, 8.0, 9.0, 9.5, and
 10.0.

 covered by a mucous material, the parasite must digest it, probably via
 proteolytic/glycolytic enzymes liberated from the vesicles, as docu-
 mented for other trematodes (Kendall, 1965).

 However, the pH of the medium also affects S. mansoni miracidial
 infectivity, with low pHs producing less movement and less efficient
 penetration by the parasites in vitro (Upatham, 1972), although pH val-
 ues lower than 5.0 were not tested in this report. Thus, low or high pH
 could damage the parasite in such a way that the contents of the vesicles
 are released into the medium, provoking generalized (as opposed to

 localized) damage of the snail epithelium. In agreement with this hy-
 pothesis, Cruz-Reyes (1986) reported that pH values below 5.0 or above
 10.0 kill F. hepatica miracidia in vitro.

 Besides the interest for optimal conditions of laboratory infection,
 this phenomenon might have implications for the natural transmission
 of the parasite, because the pH of the water may change in some areas
 where F. hepatica is present. Seasonal transmission of F. hepatica has
 been reported under natural conditions by us and others (Craig and Bell,
 1978; Boyce and Courtney, 1990; Cruz-Mendoza et al., 2002, 2004,
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 Figure 2. Infection of L. (Fossaria) humilis with F. hepatica at
 different pHs. Every 24 hr, dead snails were dissected and examined to
 determine infection by F. hepatica. The experiment was stopped at day
 18, when the remaining molluscs were examined.

 2005). Humidity and temperature have been observed to correlate with
 peaks of infection in snails. Changing pH of a water body also could
 modify the infectivity of this parasite for its intermediate host, but this
 hypothesis has not yet been addressed under natural conditions.
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 abstract: Serum was collected from laboratory-reared Virginia opos-
 sums (Didelphis virginiana) to determine whether experimentally in-
 fected opossums shedding Sarcocystis neurona sporocysts develop se-
 rum antibodies to S. neurona merozoite antigens. Three opossums were
 fed muscles from nine-banded armadillos (Dasypus novemcinctus), and
 5 were fed muscles from striped skunks (Mephitis mephitis). Serum was
 also collected from 26 automobile-killed opossums to determine wheth-
 er antibodies to S. neurona were present in these opossums. Serum was
 analyzed using the S. neurona direct agglutination test (SAT). The SAT
 was modified for use with a filter paper collection system. Antibodies

 to S. neurona were not detected in any of the serum samples from
 opossums, indicating that infection in the opossum is localized in the
 small intestine. Antibodies to S. neurona were detected in filter-paper-
 processed serum samples from 2 armadillos naturally infected with 5.
 neurona.

 Sarcocystis neurona is a causative agent of the neuromuscular disease
 equine protozoal myeloencephalitis (EPM) (Dubey et al., 1991; 2001)
 and has been isolated from horses in North and South America (Dubey
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